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Abstract. Let K be a finite extension of Qp. We verify that in the middle degree
of the Hyodo-Kato cohomology of the first covering of the Drinfeld space, one can
realize the Jacquet-Langlands and local Langlands correspondence for depth-zero
supercuspidal representations.

1. Intoduction

Let K be a finite extension of Qp, OK be the ring of integers, ϖ be a uniformizer

and Fq be the residue field. Fix a positive integer d. Choose an algebraic closure K of

K and let C := 󰁥K be the completion of the algebraic closure of K. Let G = GLd+1(K),
and let D be the (d+1)2-dimensional central division algebra over K with invariant 1

d+1 .

Denote by D× be the group of units of D and OD be the ring of integers. Drinfeld (cf.
[9],[10]) introduced the p-adic symmetric space Hd

K and its coverings Σn
K (See Section

2.3 for recall).
On one hand, Drinfeld and Carayol ([1]) conjectured a decomposition of the limit of

the l-adic cohomology of the tower Σn
C , predicting the space realizes of certain Jacquet-

Langlands and local Langlands correspondence. This conjecture has been extensively
studied over the past decades.

On the other hand, the Drinfeld tower has also played key role in recent geomet-
ric appoach to p-adic Langlands program of GL2(Qp). In [7, Sec. 5], the authors use
global methods to show that the Hyodo-Kato cohomology of the Drinfeld tower realizes
Jacquet-Langlands and local Langlands correspondence (for supercuspidal representa-
tions) in the case d = 1. In fact, the Hyodo-Kato cohomology is expected to serve as the
’p-adic companion’ of the l-adic cohomology (cf. [8, Sec. 8]), thus a similar realization
is expected for higher dimensional cases.

In this note, we consider the first covering of the Drinfeld space and verify the expec-
tation for the depth-zero supercuspidal representations.

Let θ be a primitive character of F×
qd+1 . Let ρ(θ) be the depth-zero supercuspidal

representation of D× associated to θ (See Section 4.1), π(θ) be the supercuspidal rep-
resentation of G under Jacquet-Langlands correspondence, σ(θ) be the Weil-Deligne
representation given by the local Langlands correspondence and M(θ) be a (ϕ, N,GK)-
module whose associated Weil-Deligne representation is σ(θ).

Theorem 1.1 (Theorem 4.3). We have an isomorphism of G-modules compatible with
action of ϕ, N and GK .

(1.1) HomD×(ρ(θ), Hr
HK,c(M

1,ϖ
Dr,C))

∼=

󰀫
π(θ)⊗M(θ) r = d

0 others.

Junger Damian has realized Jacquet-Langlands correspondence on Hr
dR,c(M

1,ϖ
Dr,C).

We prove the result by using Hyodo-Kato isomorphism and computing several operators
on the Hyodo-Kato cohomology.
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2. Drinfeld Space and First Covering

2.1. Bruhat-Tit Tree. We recall the Bruhat-Tit building and the reduction map on
the Drinfeld Space. Details can be found in [5, Sec. 1, 6].

For an integer d ≥ 0 and a (d+1)-dimensional vector space VK over K, we let BT be
the Bruhat-Tit tree (of PGL(VK)) with a natural G-action. It is the following simplicial
complex: the vertices BT 0 contains dilation classes of lattices s = [L] in VK and a k-cell
is a (k + 1)-tuple {s0, ..., sk} such that, after permuting si, we can find representatives
si = [Li] together with a flag (with strict inclusion)

L0 ⊃ L1 ⊃ L2 ⊃ ... ⊃ Lk ⊃ πL0.

The type of such a k-cell σ is a sequence of numbers (e0, ..., ek) where ei := dimFq Li/Li+1.
For simplices τ,σ, we denote τ ≤ σ if τ is a face of σ.

Let |BT | be the topological realization of BT . We denote the interior of a cell σ by
σ̊ := σ\(∪σ′⊊σσ

′). Given a vertex v0 ∈ T , the star st(v0) is the union of σ̊ such that

v0 ∈ σ and st(v0) is the closure. For a simplex τ , we define

st(τ) :=
󰁞

τ≤σ

σ̊ =
󰁟

v∈τ

st(v)

st(τ) :=
󰁟

v∈τ

st(v).

By a classical theorem of Goldman and Iwahori ([12]), there is a bijection between |BT |
and dilation classes of real norms on VK .

2.2. Drinfeld Space. Now we let VK = Kd+1 thus indentify P(VK) with Pd
K . Let Hd

K

be the d-dimensional Drinfeld half-space over K. It is the K-rigid subvariety of Pd
K

that is the complement of all K-rational hyperplanes (cf. [9]). There is a G-equivariant
reduction map

τ : Hd
K(C) → |BT |

via mapping x = [x0, ..., xd] ∈ Hd
K(C) to the dilation class of norms lx on VK , where

lx(v) = |
d󰁛

i=0

xivi|.

For a simplex σ, we define Hd
K,σ := τ−1(σ) and similarly for Hd

K,̊σ and Hd
K,st(σ).

We refer the following facts to [23, Sec. 2.1] and [16, Sec. 3].
There is a semistable model Hd

OK
of Hd

K due to Deligne via gluing local models. The

moduli interpretation of the local models Hd
OK ,σ (for a simplex σ of BT ) of Hd

K,σ could

be found in [21, Appendix to Sec. 3] or [23, Sec. 2.1] and Hd
OK

:= colimσ∈BT Hd
OK ,σ.

Therefore, the special fiber also admits such a decomposition Hd
Fq

= ∪σHd
Fq,σ

satisfying

Hd
K,σ =]Hd

Fq,σ
[ and we can define Hd

Fq ,̊σ
, Hd

Fq,st(σ)
by taking complements and unions.

(We warn that Hd
Fq

is the special fiber of Hd
OK

rather than Pd
Fq
\ ∪H∈H H)

The irreducible components of the special fiber Hd
Fq

are parametrized by vertices of

BT and are isomorphic projective smooth varieties. For s ∈ BT 0, the corresponding
irreducible component is Hd

Fq,st(s)
which is isomorphic to the variety obtained from Pd

Fq

by first blowing up all Fq-rational points, then blowing up strict transformation of all
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Fq-rational line, etc. Thus the inclusion of s into st(s) identifies Hd
Fq,s

with Pd
Fq
\∪H∈HH

where H is the set of rational hyperplanes of Pd
Fq
. Then we get an admissible open cov-

ering of Hd
K by (Hd

K,st(s))s∈BT 0 = (]Hd
Fq,st(s)

[)s∈BT 0 and intersections of such opens are

of the form Hd
K,st(σ) for some simplex σ in BT .

There is an explicit description of the spaces Hd
K,̊σ as the following (cf. [5, Sec. 6.4]):

Assume the simplex σ with type (e0, ..., ek) is represented by

L0 ⊃ L1 ⊃ L2 ⊃ ... ⊃ Lk ⊃ πL0.

Let di = ei + · · ·+ ek. Consider the affinoid subdomain of Br
K

Cr := {(x1, ..., xr) ∈ Br
K : ∀a ∈ Or+1

K \πOr+1
K , |〈(1, x), a〉| = 1}

and the ‘multiannulus’

Ak := {(t1, ..., tk) ∈ Bk
K : |π| < |tk| < · · · < |t1| < 1}.

By choosing a basis xi of VK adapted to σ, the morphisms

Hd
K,̊σ → Cei−1 : [x0, ..., xd] 󰀁→ (

xdi−1+1

xdi−1

,
xdi−1+2

xdi−1

, ...,
xdi−1

xdi−1

)

Hd
K,̊σ → Ak : [x0, ..., xd] 󰀁→ (

xd0

xdk

,
xd1

xdk

, ...,
xdk−1

xdk

)

induces an isomorphism

(2.1) Hd
K,̊σ

∼=−→
k󰁜

i=0

Cei−1 ×Ak =: Cσ ×Ak.

2.3. The First Covering of Drinfeld Space.

2.3.1. Moduli Interpretation. We recall the construction of coverings of the Drinfeld half-
space following [10]. Let D be the central division algebra over K of dimension (d+1)2

with invariant 1/(d+ 1). Let OD be its ring of integers and ΠD be a uniformizer.

Definition 2.1. Let B be an OK-algebra and Od+1 be the ring of integers of a maximal
unramified extension of K in D.

(1) An formal OK-module over B is a formal group over B together with an action
of OK such that it induces the natural action on the tangent space.

(2) A formal OD-module over B is a formal OK-module together with an OD-action
which extends the action of OK . A formal OD-module X is special if Lie(X) is
a Od+1 ⊗OK

B-module locally free of rank 1.

We fix a special formal OD-module Φ over k = Fq. Let OǨ := W (k) and Ǩ :=
OǨ [1/p]. By [22, Lem 3.60], any such two special formal OD-modules are isogenous.
Let NilpOK

be the category of OK-algebras such that image of ϖ is nilpotent. We define
a functor G : NilpOK

→ Sets which maps B ∈ NilpOK
to isomorphic classes of triples

(ψ, X, ρ) where

(1) ψ : k → B/ϖ is an Fq-homomorphism.
(2) X is a special formal OD-module over A of height (d+ 1)2.
(3) ρ : Φ⊗k B/ϖB 󰃚󰃚󰃄 XB/ϖB is a quasi-isogeny of height zero.

Theorem 2.2 (Drinfeld). The functor G is represented by Hd
OǨ

.
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One could also form another functor 󰁨G : NilpOK
→ Sets which maps B ∈ NilpOK

to
isomorphic classes of triples (ψ, X, 󰁨ρ) where ψ, X are the same as above and 󰁨ρ is a quasi-
isogeny between Φ⊗k B/ϖB and XB/ϖB , without restriction on the height. Then the

functor 󰁨G has a decomposition
󰁨G =

󰁤

h∈Z
G(h)

where G(h) corresponds to those (ψ, X, 󰁨ρ) such that 󰁨ρ has height (d + 1)h. Each G(h)

is non-canonically isomorphic to G. By [10, Sec. 2] and [22, Thm. 3.72], the functor
󰁨G is represented by a formal scheme 󰁦M0

Dr and the decomposition above induces a non-
canonical isomorphism

󰁦M0
Dr

∼= Hd
OǨ

× Z.

The space 󰁦M0
Dr admits a Weil descent datum relative to Ǩ/K which is given by the

composition of the canonical Weil descent datum on Hd
OǨ

and translate by 1 on Z.

Let X (resp. 󰁨X) be the universal formal special OD-module over Hd
OǨ

(resp. 󰁦M0
Dr).

For n ≥ 0, multiplication by Πn
D induces an isogeny on X (resp. 󰁨X) and the group

X[Πn
D] := ker(X

Πn
D−→ X) (resp. 󰁨X[Πn

D]) is finite flat of rank p(d+1)n over Hd
OǨ

(resp.

󰁦M0
Dr). We set Σ0 := Hd

Ǩ
and M0

Dr := (󰁦M0
Dr)

rig ∼= Σ0 × Z. For n ≥ 1, we define

Σn := X[Πn
D]\X[Πn−1

D ]; Mn
Dr := 󰁨X[Πn

D]\󰁨X[Πn−1
D ].

The projection Σn → Σ0 and Mn
Dr → M0

Dr are finite étale morphisms with Galois
group O×

D/(1+Πn
DOD). There exist an action of G,D× and a Weil descent data on the

tower {Mn
Dr}n together with a G ×D×-equivariant period morphism ξ : M0

Dr → Hd
K

such that when we base change Hd
K to Ǩ the morphism is compatible with Weil descent

data (the data on Hd
Ǩ

is via Galois descent) (See [4, Sec 3.1] for descriptions of actions).

2.3.2. The First Covering. In particular, the first covering π : Σ1 → Hd
Ǩ

is finite étale

with Galois group F×
qd

∼= O×
D/(1+ΠDOD). PutN = qd+1−1 and let r be the composition

r : Σ1 π−→ Hd
Ǩ

τ−→ |BT |.

For a simplicial complex η of BT , define Σ1
η := r−1|η|. It is clear that Σ1

η = π−1Hd
Ǩ,η

.

Damien ([18, Thm. A]) proved the vanishing of analytic picard group of Hd
L for any

complete extension L/K (Note that Pican(Hd
L) = Picét(Hd

L) cf. [11, Prop 8.2.3]). Apply
classification of Raynaud scheme together with a study of invertible functions on Hd

L

([18, Thm 7.1]), he shows the following result:

Theorem 2.3 ([17, Thm. 4.9]). There exists u ∈ O×(Hd
Ǩ
) such that

(2.2) Σ1 ∼= Hd
Ǩ
((πu)1/N ) := Spec

Σ0(OΣ0 [X]/(XN −ϖu))

In fact, the element u has an explicit description and satisfies the following property.
Let s = [Od+1

K ] be the standard lattice of VK and fix b ∈ (Fq)
d\{0}. Put

u(z) := (−1)d(b0z0 + · · ·+ bdzd)
−N

󰁜

a∈(Fq)d\{0}

(a0z0 + · · ·+ adzd)

which is an invertible function over Hd
Fq,s

∼= Pd\ ∪H∈H H. In fact, the image of u(z) in

O×(Hd
Fq,s

)/(O×(Hd
Fq,s

))N does not depend on b so we can choose b = (0, ..., 0, 1). We

can lift u1 to an invertible function on Hd
Ǩ,s

and Hd
Ǩ,st(s)

and still denote it by u1. Then

u|Hd
Ǩ,st(s)

≡ u1 (mod O×(Hd
Ǩ,st(s)

)N ).
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3. Cohomology of Σ1
s and Deligne-Lusztig Variety

3.1. Deligne Lusztig variety. Recall the Deligne-Lusztig variety asssociated to G =
GLd+1,Fq (cf. [6]) . Let B be the subgroup of upper-triangle matrices ofG, U be the strict
upper-triangle matrices and T be the diagonal matrices. Let W = NG(T )/T ∼= Sd+1 be
theWeyl group identified with the permutation group. Assume w is a matrix corresponds
to permutation (0, 1, ..., d) and we regard Fq-points of the flag variety X := G/B as the

set of Borel subgroups of G(Fq). Define X(w) ⊆ X to be the subvariety whose Fq-points
containing Borel subgroups B′ such that B′ and F (B′) are in relative position w, i.e

X(w) = {gB : g−1F (g) ∈ BwB} ⊆ G/B.

There is a variety X̃(w) above X(w):

󰁨X(w) := {gU : g−1F (g) ∈ UwU} ⊆ G/U

with an obvious map π : 󰁨X(w) → X(w); gU 󰀁→ gB. We have a commutative diagram

󰁨X(w)
i 󰈣󰈣

π

󰈃󰈃

G/U

π

󰈃󰈃
X(w)

i 󰈣󰈣 G/B

By [6, Sec 2.2], the variety X(w) can be identified with Hd
Fq
. In fact, it is the non-

vanishing locus of
󰁜

a∈Pd(Fq)

(a0X0 + · · ·+ adXd) = c · det((Xqj

i )0≤i,j≤d)

in Pd
Fq

where c ∈ F×
q depending on choice of representatives of a. In this case, the variety

󰁨X(w) can be identified with the closed subvariety DLd
Fq

of Ad+1
Fq

defined by equation

det((Xqj

i )0≤i,j≤d)
q−1 = (−1)d

such that π : 󰁨X(w) → X(w) is induced by the natural map Ad+1
Fq

\{0} → Pd
Fq
.

Theorem 3.1 ([23, Thm. 2.5.4], [16, Lem. 6.3]). Let s be a vertex of BT and ǨN =

Ǩ(ϖ1/N ). Then Σ1
ǨN ,s

admits a smooth model 󰁥Σ1
OǨN

,s such that the special fiber Σ
1

s is

isomorphic to DLd
Fq
. Moreover, the isomorphism is GLd+1(OK)× F×

qd+1-equivariant.

Let θ : F×
qd+1 → Ǩ be a character. We call it primitive if does not factor through

any norm Norm : F×
qd+1 → F×

qs for s ≤ d. For V a representation of F×
qd+1 , we write

HomF×
qd+1

(θ, V ) as V [θ].

Proposition 3.2 ([16, Prop. 6.6]). Assume σ is a simplex of dimension greater than

zero, then Hj
dR,c(Σ

1
st(σ))[θ] = 0 for all j and primitive θ.

3.1.1. G-action. We have the following theorem

Theorem 3.3 ([14, Cor. 4.5]). For any l ∕= p, fix an isomorphism Ql
∼= K and let θ be

a nonsingular character of F×
qd+1 then

πθ := Hd
rig,c(DLd

Fq
/K)[θ] := (Hd

rig,c(DLd
Fq

/K)⊗K K)[θ]

is isomorphic to

πθ,l := Hd
ét,c(DLd

Fq
,Ql)[θ]
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as representations of G(Fq) on a field of characteristic zero. Moreover, if i ∕= d then the

θ-eigenspace of Hi
rig,c(DLd

Fq
/K) is zero.

Remark 3.4. By Deligne-Lusztig correspondence, the G(Fq)-representation πθ,l is ir-
reducible with dimension (q − 1)(q2 − 1) · · · (qd − 1), so is πθ. Define

Hd
rig,c(DLd

Fq
/Kur) := colimK′⊆Kur Hd

rig,c(DLd
Fq

/K ′)

where K ′/K0 are finite unramified extensions. Then πθ is realizable over Kur as πθ
∼=

Hd
rig,c(DLd

Fq
/Ǩ)[θ] ⊗Ǩ K. In fact, such a realization is unique (up to isomorphism)

by applying the following well-known lemma and using irreducibility. we also use πθ

to denote the representation Hd
rig,c(DLd

Fq
/Kur)[θ] or Hd

rig,c(DLd
Fq

/Ǩ)[θ] if there is no
confusion.

Lemma 3.5. Let G be a finite group. Let K be a field in characteristic zero and L/K
be an extension of K. Assume V, V ′ are two finite dimensional K-representations of G,
then there is an isomorphism

HomG(V, V
′)⊗K L

∼=−→ HomG(VL, V
′
L).

Proof. It is clear there is an isomorphism

Hom(V, V ′)⊗K L
∼=−→ Hom(VL, V

′
L).

For elements gi ∈ G (1 ≤ i ≤ n), let ρ(gi) (resp. ρ
′(gi)) be their image in End(V ) (resp.

End(V ′)), then we can identify

HomG(V, V
′) ∼= ker(Hom(V, V ′)

αi−→ ⊕n
i=1 Hom(V, V ′))

where αi(f) = ρ′(gi) ◦ f − f ◦ ρ(gi). □

3.1.2. Frobenius. Let σ be the lifting of the Frobenius of Fq to W (Fq)[1/p]. Assume θ
is a primitive character of F×

qd+1 and h ∈ F×
qd+1 . Since F×

qd+1 is a cyclic group of order

(qd+1 − 1) and Kd+1 := W (Fqd+1)[1/p] contains (qd+1 − 1)-th root of unit, the θ-action

on Hd
rig,c(DLFq /Ǩ) descents to Hd

rig,c(DLF
qd+1

/Kd+1). By [14, Remarks (1) before Lem

1.3], the space Hd
rig,c(DLF

qd+1
/Kd+1)[θ] is stable under the action of ϕd+1. Since the

action of G(Fq) commutes with ϕ and rigid cohomology commutes with extension of
base field, we can write

Hd
rig,c(DLF

qd+1
/Kd+1)[θ] ∼= Mθ ⊗ Vθ

where Vθ is a G(Fq)-representation of dimension
󰁔d

i=1(q
i−1) and Mθ is a 1-dimensional

ϕd+1-module over Kd+1.

Proposition 3.6. ϕd+1 acts on Mθ via multiplying by (−1)dqd(d+1)/2.

Proof. Note that ϕd+1 is σd+1-semilinear which fixes Fqd+1 , it suffices to see

Tr(ϕd+1|Hd
rig,c(DLd

F
qd+1

)[θ]) = (−1)dqd(d+1)/2
d󰁜

i=1

(qi − 1).

Use the same argument as in [15, Page 171] (replace Lefschetz trace formula of crystalline
cohomology by rigid cohomology) and apply theorem 3.3, we get

(−1)d Tr(ϕd+1|Hd
rig,c(DLd

F
qd+1

)[θ]) =
1

qd+1 − 1

󰁛

h∈F×
qd+1

θ(h)#Fix(ϕd+1h−1).

To compute it, recall ([14, Sec 4]) the following expression of Deligne-Lusztig variety.
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Let z0 = 1 and z1, ..., zd to be d variables. Set δ := det((zq
j

i )0≤i,j≤d) and

Π := −
󰁜

a∈Fd+1
q −{0}

d󰁛

i=0

aizi.

Then Π = (−1)dδq−1. Set A = Fq[z1, ..., zd][
1
Π ], B = A[X0]/(1−Xqd+1−1

0 Π), Y = SpecA

and X = SpecB. The map 󰁨X(w) → X(w) can be G(Fq)-equivariantly identified with
the natural map X → Y . The F×

qd+1 -action on XF
qd+1

→ YF
qd+1

can be written as

h(X0, z1, ..., zd) = (hX0, z1, ..., zd) where h ∈ F×
qd+1 and (X0, z1, ..., zd) ∈ X(k). Thus

Fix(ϕd+1h−1) is the set (X0, z1, ..., zd) ∈ kd+1 such that
󰀻
󰁁󰀿

󰁁󰀽

Xqd+1

0 = hX0

zi ∈ Fqd+1

Xqd+1−1
0 Π(z) = 1

Since X0 ∕= 0, the third equation becomes Π(z) = (−1)dδq−1(z) = h−1. Note that

zq
d+1

i = z, so δq = det((zq
j+1

i,j )0≤i,j≤d) = (−1)dδ which means h = 1. Now the claim

follows from [6, Prop 2.3] that

#Y (Fqd+1) =

d󰁜

i=1

(qd+1 − qi) = qd(d+1)/2
d󰁜

i=1

(qi − 1).

□

3.2. Hyodo-Kato cohomology of Σ1
s,C .

3.2.1. Overconvergent Hyodo-Kato cohomology. We recall compactly supported over-
convergent Hyodo-Kato cohomology in [20]. Let L = K or C and X is a smooth rigid
analytic variety over L. Then we have arithmetic (when L = K) or geometric (when
L = C) Hyodo-Kato cohomology RΓHK(X) of X (See [2, Sec 4.2, 4.3]) and completed
geometric (when L = C) Hyodo-Kato cohomology RΓHK,F̌ (X) of X (See [3, Sec. 4]).
The definitions can be moved to condensed maths and we get solid version of these
cohomologies. Note that if there exists a semistable model of X, we have local global
compatibility of corresponding cohomologies (cf. [2, Prop. 4.11, 4.23], [3, Lem. 4.2]).

In overconvergent setting, there are two definitions: one is via Hyodo-Kato cohomol-
ogy of Gross-Klonne ([2]), the other one is locally via presentation of dagger affinoid,
use the geometric rigid analytic Hyodo-Kato cohomology and then descent. These two
constructions gives the same cohomology (cf. [3, Lem. 4.14]). In particular, we have the
following local-global compatibility: Assume X /OF is a semistable weak formal scheme
where F is a finite extension of K. Let X† := XOC ,η be the generic fiber of XOC

which
is a smooth dagger variety. Then we have a quasi-isomorphism of (ϕ, N)-modules

RΓHK(X
†) ≃ RΓlog

rig (X
0
1 /L0)⊗□

L0
Kur

RΓHK,F̌ (X
†) ≃ RΓlog

rig (X
′
1
0/Ǩ)

If X is quasi-compact and quasi-separated, then the cohomology groups above are finite
dimensional and the solidification is not necessary.

For compactly supported overconvergent setting. We first have a local definition: For
a smooth dagger affinoid variety X† over L with presentation {Xh}h∈N, the correspond-
ing (local) overconvergent Hyodo-Kato cohomology is defined via

RΓ󰂑
HK,∗(X

†) := colimh RΓHK,∗(Xh)
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where ∗ ∈ {∅, F̌} when L = C. The compactly supported cohomologies are defined by

RΓ󰂑
HK,∗,c(X

†) := [RΓ󰂑
HK,∗(X

†) → RΓ󰂑
HK,∗(∂X

†)]

where the cohomology of boundary is defined as

RΓ󰂑
HK,∗(∂X

†) := colimh RΓHK,∗(Xh\󰁦X†).

For general smooth dagger variety, the corresponding compactly supported Hyodo-Kato
cohomology RΓHK,∗,c(X

†) is defined via analytic descent (cf. [20, Sec. 4.1]). When
L = C and X a smooth dagger affinoid over L, we have local-global compactibility

RΓHK,∗,c(X
†) ≃ RΓ󰂑

HK,∗,c(X
†).

We have the Hyodo-Kato duality for smooth dagger affinoid variety:

Theorem 3.7 ([20, Sec. 6.5.3]). For a smooth dagger affinoid variety X† over K pure
of dimension d, there is a perfect pairing compatible with (ϕ, N,GK) actions

Hi
HK,∗(X

†
C)×H2d−i

HK,∗,c(X
†
C){d} → LK

where LF = Kur when ∗ = ∅ and LF = Ǩ when ∗ = F̌ . Moreover, such a pairing is
compatible with the pairing of de Rham cohomology under the Hyodo-Kato map.

3.2.2. Cohomology of Σ1
s,C .

Lemma 3.8. For a primative character θ, we have

Hi
HK,c(Σ

1
s,C)[θ]

∼=

󰀫
Mθ ⊗ πθ i = d

0 i ∕= d

where Mθ is a (ϕd+1, N,GK)-module of rank 1. Here ϕd+1 acts as multiplying by
(−1)dqd(d+1)/2, the action of the monodromy operator N is trivial, the GK-action factors
through Gal(ǨN/Ǩ) ∼= F×

qd+1 via the character θ.

Proof. By functoriality of the Hyodo-Kato cohomology, the action of G(Fq) × F×
qd+1

commutes with the action of ϕ, N and GK . By theorem 2.3, Σ1
s,C admits a smooth

formal model whose special fiber is the Deligne-Lusztig variety. Note that Σ1
s,C is an

(smooth) affinoid domain of Bd
C (See section 2.2) which admits a dagger structure and

we view it as a dagger affinoid space. Since the Deligne-Lusztig variety admits a smooth
weak formal model, the natural map (where 0 means log structure 1 → 0)

Hi
rig(DLF

qd+1
/Kn+1) → Hi

rig(DL0
F
qd+1

/K0
n+1)

induces an isomorphism of ϕ-modules which is equivariant under the action of F×
qd+1 and

G(Fq). Using duality of Hyodo-Kato cohomology (Theorem 3.7) and rigid cohomology
([19, Thm. 1.2.3]) and the local-global compatibility, we can apply previous results on
rigid cohomology of Deligne-Lusztig varieties to Hyodo-Kato cohomology of Σ1

s,C . Thus

we get the decomposition, the dimension of Mθ is one and ϕd+1 acts as multiplying by
(−1)dqd(d+1)/2. The action of the monodromy operator N is trivial because Nϕ = qϕN .
We need to determine the Galois action, note that there is a formal scheme Σ1

s,OKN
such

that its special fiber is the rational Deligne-Lusztig DLFq and Σ1
s,ǨN

is the base change

of its generic fiber to ǨN .

Lemma 3.9. There is an isomorphism of finite dimensional GKN
-modules

Hs
HK,c(Σ

1
s,KN

)⊗K0 K
ur ∼= Hs

HK,c(Σ
1
s,C)

where the action on the left hand side is via the coefficient Kur.
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Proof. The non-completed Hyodo-Kato satisfies Galois descent (cf. [2, Prop. 4.26]), we
know compactly supported Hyodo-Kato cohomology also satisfies Galois descent. Thus
we have a map

Hs
HK(Σ

1
s,KN

) ∼= Hs
HK(Σ

1
s,C)

GKN ↩→ Hs
HK(Σ

1
s,C).

By local-global compatibility, there is an isomorphism Hs
HK(Σ

1
s,KN

) ∼= Hs
rig(DLFq /K0).

Thus, we have the following commutative diagram of finite dimensional GKN
-modules

Hs
HK(Σ

1
s,KN

)⊗Kur −−−−→ Hs
HK(Σ

1
s,C)

∼=
󰁂󰁂󰁼

󰁂󰁂󰁼∼=

Hs
rig(DLFq

/K0)⊗K0
Kur =−−−−→ Hs

rig(DLFq
/K0)⊗K0

Kur.

We can conclude from duality for Hyodo-Kato cohomology (Theorem 3.7), duality for
rigid cohomology and local global compatibility of compactly supported Hyodo-Kato
cohomology.

□
In particular, the GǨN

-action on Hs
HK,c(Σ

1
s,Ǩ

) factors through Gal(ǨN/Ǩ). Note

that, after choosing ϖN a N -th power root of ϖ, there is an isomorphism

Σ1
ǨN ,s

∼= SpOHd
ǨN ,s

[X ′]/(X ′N − u)

where X ′ = X/ϖN . Then Gal(ǨN/Ǩ) can be identified with µN via g 󰀁→ g(πN )/πN ∈
µN and the Galois action of Gal(ǨN/Ǩ) is identified with the action of F×

qd+1 by choosing

an appropriate isomorphism µN
∼= F×

qd+1 . So the action of GǨ on Hd
HK,c(Σ

1
s,C)[θ] factors

through Gal(ǨN/Ǩ) ∼= F×
qd+1 via the character θ.

□

4. Supercuspidal Part of Hyodo-Kato Cohomology

4.1. Notations. Let GD be the group G×D× and let vGD be the map

vGD : G×D× −→ Z; (g, b) 󰀁→ vK(det(g)Norm(b)).

For i ∈ Z, let [GD]i := v−1
GD(iZ) and put [G]i := G ∩ [GD]i, [D]i := D× ∩ [GD]i. Note

that there are inclusions
O×

D −→ [GD]0; b 󰀁→ (id, b)

G −→ [GD]0; g 󰀁→ (g,Π
− det(g)
D )

but their image does not commute.

Let θ : F×
qd+1 → Ǩ be a character. We can view θ as a character of [D]d+1 via

[D]d+1
∼= O×

DϖZ → O×
D → O×

D/(1 +ΠDOD) ∼= F×
qd+1 → Ǩ.

It is associated, via Deligne-Lusztig correspondence, a representation πθ of GLd+1(Fq).
We can view it as a representation of GLd+1(OK)ϖZ via GLd+1(OK) → GLd+1(Fq).
We consider the following representations via induction:

π̃(θ) := c-ind
[G]d+1

GLd+1(OK)ϖZ πθ

π(θ) := c-indGGLd+1(OK)ϖZ πθ

ρ(θ) := c-indD
×

[D]d+1
θ.

On the Galois side, let 󰁨θ be the character of [WK ]d+1 := IK〈ϕd+1〉Z such that 󰁨θ(ϕd+1) =

(−1)dqd(d+1)/2 and 󰁨θ|IK factors as IK → IK/IKN
∼= F×

qd+1

θ−→ Ǩ. Let

σ(θ) := indWK

[WK ]d+1

󰁨θ
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be the Weil representation. Let M(θ) be the (d+1)-dimensional (ϕ, N,GK)-module over
Kur described as the following: M(θ) admits a basis {e0, ..., ed} such that ϕ(ei) = ei+1

for 0 ≤ i < d and ϕ(ed) = (−1)dqd(d+1)/2e0, the monodromy acts trivially, the IK-
action factors through Gal(ǨN/Ǩ) ∼= F×

qd+1 via g(ei) = σi(θ(g))ei and the Frobenius

in GK acts trivially on ei. So σ(θ) is the Weil-Deligne representation associated to M(θ).

There is a natural action of GD on M1
Dr which is non-canonically isomorphic to

Σ1 ×Z. Let M1,ϖ
Dr be the quotient M1

Dr/ϖ
Z. It has a formal model over OK (the Weil

descent datum on M1
Dr/ϖ

Z is effective cf. [22, 3.49]) which we still denote by M1,ϖ
Dr .

If we identify Σ1
K with Σ1

K = Σ1
K × {0} ⊆ Σ1

K × Z/(d+ 1)Z ∼= M1,ϖ
Dr , the action of GD

induces one on M1,ϖ
Dr . The stabilizer of Σ1

K × {0} can be identified with [GD]d+1.

4.2. Restriction to Smooth Locus. Let J be a finite set of vertices of BT . We define
YJ := ∩s∈JHd

Fq,st(s)
to be the intersection of irreducible components corresponding to

s ∈ J and Y̊J := YJ\(∪s/∈JYs). Recall that we have the following maps

Σ1
K

π−−−−→ Σ0
K = Hd

K

sp−−−−→ Hd
Fq
.

Theorem 4.1. The inclusion of tubes of Σ1
C

(π−1(]Y̊J [
†
Σ0))C −→ (π−1(]YJ [

†
Σ0))C

induces an isomorphism of Hyodo-Kato cohomologies

H∗
HK(π

−1(]YJ [
†
Σ0))C)

∼=−→ H∗
HK(π

−1(]Y̊J [
†
Σ0))C).

Proof. Take X = Hd
OǨ

, the condition of [16, Thm. 5.1] is satisfied thus we get a bijection

(4.1) H∗
dR(π

−1(]YJ [
†
Σ0))

∼=−→ H∗
dR(π

−1(]Y̊J [
†
Σ0)).

In fact, they are finite dimensional Kur-vector spaces. Since ]YJ [Σ0∼= Hd
Ǩ,st(σ)

for some

simplex σ of BT , use the bijection above, it suffices to see overconvergent de Rham
cohomologies of π−1(Hd

Ǩ,̊σ
) are finite dimensional. We have an explicit description (cf.

[16, After Lem. 6.7]):
Σ1

σ̊
∼= (TAk

× TCσ )/H

where TAk
= Ak,Ǩ(u

1/N
Ak

), TCσ
= Cσ,Ǩ((πuCσ

)1/N ) are µN -torsors above Ak,Ǩ and Cσ,Ǩ

respectively, H is the anti-diagonal of µ2
N . So it suffices to see finiteness for TAk

and
TCσ . Since TCσ is quasi-compact and smooth, finiteness follows from [13, Thm. A]. For
TAk

, it is [16, Cor. 5.11, Thm. 5.8] applied to the semi-open monomial torus Ak.

Applying geometric Hyodo-Kato isomorphism, we have a commutative diagram

H∗
HK(π

−1(]YJ [
†
Σ0))C)⊗Kur C 󰈣󰈣

󰈃󰈃

H∗
dR(π

−1(]YJ [
†
Σ0))C)

󰈃󰈃

H∗
HK(π

−1(]Y̊J [
†
Σ0))C)⊗Kur C 󰈣󰈣 H∗

dR(π
−1(]Y̊J [

†
Σ0))C)

where two horizontal maps are isomorphisms by geometric Hyodo-Kato isomorphism
and right vertical map is an isomorphism by (4.1). Thus the left vertical map is an
isomorphism which, use finiteness, implies the desired result.

□
Proposition 4.2. We have isomorphisms compatible with actions of ϕd+1 and GK

(4.2) Hr
HK,F̌ ,c

(Σ1
C)[θ]

∼=

󰀫󰁏
s∈BT 0

Hs
HK,F̌ ,c

(Σ1
s,C)[θ] r = d

0 others.
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In particular, as a G-module, Hd
HK,F̌ ,c

(Σ1
C)[θ] is isomorphic to π(θ).

Proof. By functoriality, the Hyodo-Kato morphism is G×F×
qd+1 -equivariant. Therefore,

Hj

HK,F̌ ,c
(Σ1

st(σ),C)[θ] = 0 when σ has nonzero dimension because otherwise a non-zero el-

ement will induce a nonzero element in Hj
dR,c(Σ

1
st(σ),C)[θ]. Especially, the Cech spectral

sequence given by the covering provided by Σ1
st(σ)

(4.3) E−r,s
1 =

󰁐

σ∈BT
Hs

HK,F̌ ,c
(Σ1

st(σ),C) ⇒ Hs−r
HK,F̌ ,c

(Σ1
C)

degenerates once we take the θ-isotypical part. Apply Theorem 4.1 and 3.1, we get
󰁐

s∈BT 0

Hs
HK,F̌ ,c

(Σ1
st(s),C)[θ]

∼=
󰁐

s∈BT 0

Hs
HK,F̌ ,c

(Σ1
s,C)[θ]

∼=
󰁐

s∈BT 0

Hs
rig,c(DLF /Ǩ)[θ].

□

4.3. Jacquet Langlands and Local Langlands.

Theorem 4.3. Let θ be a primitive character of F×
qd+1 . We have an isomorphism of

G-modules compatible with action of ϕ, N and GK .

(4.4) HomD×(ρ(θ), Hr
HK,c(M

1,ϖ
Dr,C))

∼=

󰀫
π(θ)⊗M(θ) r = d

0 others.

Proof. For the first, we forget the action of ϕ, N and GK . As G-modules, we have the
following isomorphisms

HomD×(ρ(θ), Hd
HK,c(M

1,ϖ
Dr,C))

∼= HomD×(c-indD
×

[D]d+1
θ, c-indGD

[GD]d+1
Hd

HK,c(Σ
1
C))

∼= Hom[D]d+1
(θ, c-indG[G]d+1

Hd
HK,c(Σ

1
C))

∼= c-indG[G]d+1
HomF×

qd+1
(θ, Hd

HK,c(Σ
1
C))

∼= c-indG[G]d+1
π(θ)|[G]d+1

∼= c-indG[G]d+1
(c-indG[G]d+1

󰁨π(θ))|[G]d+1

∼= c-indG[G]d+1

󰁐

x∈G/[G]d+1

cx(󰁨π(θ))

∼=
󰁐

x∈G/[G]d+1

c-indG[G]d+1
cx(󰁨π(θ))

∼= π(θ)|G/[G]d+1| = π(θ)d+1.

The second isomorphism is by adjunction, the forth one is proposition 4.2, the sixth one
is Mackey decomposition using [G]d+1 is a normal subgroup, the others are easy. When
r ∕= d, the same computation together with proposition 4.2 shows the Hom set is zero.

Now we consider the action of ϕ, N,GK . From the computation above, we see
HomG(π(θ), H

d
HK,c(M

1,ϖ
Dr,C)[ρ(θ)]) is a (d + 1)-dimensional (ϕ, N,GK)-module and the

(d + 1) copies of π(θ) corresponds to (d + 1) connected components of M0,ϖ
Dr,C . Con-

sider the period map ξ described in section 2.3.1, the Frobenius action ϕ translate the
connected components by +1. On Hd

HK,c(M
1,ϖ
Dr,C), ϕd+1 acts via multiplication via

(−1)dqd(d+1)/2 by proposition 3.8 and 4.2. To see N and GK act as desired, note that
the period map is a local isomorphism, compatible with Weil descent data. Thus it
follows by a same argument as in section 3.2.2 and that the Cech spectral sequence (4.3)
is N and GK equivariant.

□
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17. , Équations pour le premier revétement de l’espace symétrique de Drinfeld, arXiv preprint
arXiv:2202.01018 (2022).

18. , Cohomologie analytique des arrangements d’hyperplans, Algebra & Number Theory 17
(2023), no. 1, 1–43.

19. KIRAN S KEDLAYA, Finiteness of rigid cohomology with coefficients, DUKE MATHEMATICAL
JOURNAL 134 (2006), no. 1.

20. Wieslawa Niziol, Sally Gilles, and Poitr Achinger, Compactly supported pro-étale cohomology of
analytic varieties, Preprint 2025.

21. M Rapoport, On the bad reduction of Shimura varieties. automorphic forms, Shimura varieties,
and l-functions, vol. II (ann arbor, mi, 1988), 253–321, Perspect. Math 11.

22. M. Rapoport and T. Zink, Period spaces for p-divisible groups, Annals of mathematics studies,
Princeton University Press, 1996.

23. Haoran Wang, L’espace symétrique de Drinfeld et correspondance de Langlands locale i, Mathema-
tische Zeitschrift 278 (2014), no. 3, 829–857.


