Hyodo-Kato Cohomology of the First Covering of Drinfeld Spaces

ZHENGHUI LI

ABSTRACT. Let K be a finite extension of Q,. We verify that in the middle degree
of the Hyodo-Kato cohomology of the first covering of the Drinfeld space, one can
realize the Jacquet-Langlands and local Langlands correspondence for depth-zero
supercuspidal representations.

1. INTODUCTION

Let K be a finite extension of Q,, Ok be the ring of integers, @ be a uniformizer
and F, be the residue field. Fix a positive integer d. Choose an algebraic closure K of

K and let C := K be the completion of the algebraic closure of K. Let G = GLg41(K),
and let D be the (d+1)2-dimensional central division algebra over K with invariant ﬁ.
Denote by D* be the group of units of D and Op be the ring of integers. Drinfeld (cf.
[9],[10]) introduced the p-adic symmetric space H% and its coverings %% (See Section
2.3 for recall).

On one hand, Drinfeld and Carayol ([1]) conjectured a decomposition of the limit of
the [-adic cohomology of the tower ¥, predicting the space realizes of certain Jacquet-
Langlands and local Langlands correspondence. This conjecture has been extensively
studied over the past decades.

On the other hand, the Drinfeld tower has also played key role in recent geomet-
ric appoach to p-adic Langlands program of GL(Q,). In [7, Sec. 5], the authors use
global methods to show that the Hyodo-Kato cohomology of the Drinfeld tower realizes
Jacquet-Langlands and local Langlands correspondence (for supercuspidal representa-
tions) in the case d = 1. In fact, the Hyodo-Kato cohomology is expected to serve as the
'p-adic companion’ of the [-adic cohomology (cf. [8, Sec. 8]), thus a similar realization
is expected for higher dimensional cases.

In this note, we consider the first covering of the Drinfeld space and verify the expec-
tation for the depth-zero supercuspidal representations.

Let 6 be a primitive character of F;d+1. Let p(8) be the depth-zero supercuspidal
representation of D* associated to 6 (See Section 4.1), 7(6) be the supercuspidal rep-
resentation of G under Jacquet-Langlands correspondence, o(f) be the Weil-Deligne
representation given by the local Langlands correspondence and M (6) be a (¢, N, Gk )-
module whose associated Weil-Deligne representation is o(6).

Theorem 1.1 (Theorem 4.3). We have an isomorphism of G-modules compatible with
action of o, N and G .

T(0)@M(@O) r=d
1.1 Hompx (p(0), Hijx ,(MEZ ) =
( ) mp (P( ) HK,c( Dr,C)) {0 others.
Junger Damian has realized Jacquet-Langlands correspondence on HSR,C(MBZC).
We prove the result by using Hyodo-Kato isomorphism and computing several operators
on the Hyodo-Kato cohomology.
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2. DRINFELD SPACE AND FIRST COVERING

2.1. Bruhat-Tit Tree. We recall the Bruhat-Tit building and the reduction map on
the Drinfeld Space. Details can be found in [5, Sec. 1, 6].

For an integer d > 0 and a (d + 1)-dimensional vector space Vi over K, we let BT be
the Bruhat-Tit tree (of PGL(Vk)) with a natural G-action. It is the following simplicial
complex: the vertices BT contains dilation classes of lattices s = [L] in Vi and a k-cell
is a (k + 1)-tuple {so, ..., sx} such that, after permuting s;, we can find representatives
s; = [L;] together with a flag (with strict inclusion)

LoD Li DLy D...D L Dwhly.

The type of such a k-cell o is a sequence of numbers (e, ..., ex) where e; := dimp, L; /L.
For simplices 7,0, we denote 7 < ¢ if 7 is a face of o.

Let |BT| be the topological realization of BT. We denote the interior of a cell o by
0 = 0\(Usrcs0’). Given a vertex vy € T, the star st(vg) is the union of & such that
v € o and st(vg) is the closure. For a simplex 7, we define

st(r) = | J o= () st(v)
st(r) := m st(v

By a classical theorem of Goldman and Iwahori ([12]), there is a bijection between |BT|
and dilation classes of real norms on V.

2.2. Drinfeld Space. Now we let Vi = K9! thus indentify P(Vy) with P%. Let H%
be the d-dimensional Drinfeld half-space over K. It is the K-rigid subvariety of P%
that is the complement of all K-rational hyperplanes (cf. [9]). There is a G-equivariant
reduction map

).

7:HL(C) — |BT|
via mapping x = [0, ..., z4] € H%(C) to the dilation class of norms I, on Vi, where

d
l(v) = |Zl‘ﬂ}i|.
i=0

For a simplex o, we define H%U := 771(0) and similarly for H‘Ii(y& and H‘Ii{’st(o).

We refer the following facts to [23, Sec. 2.1] and [16, Sec. 3].

There is a semistable model H%K of ]HI% due to Deligne via gluing local models. The
moduli interpretation of the local models HE, _, (for a simplex o of BT) of H , could
be found in [21, Appendix to Sec. 3] or [23, Sec. 2.1] and ]HI?QK := colimgyepT H%K,U.
Therefore, the special fiber also admits such a decomposition H%q = UUH%Q’U satisfying
H%,U :]H%q’a[ and we can define H]‘Iﬁq’&, ng,st(g) by taking complements and unions.
(We warn that H%q is the special fiber of HY, _ rather than ]P’]%q\ Ubgen H)

The irreducible components of the special fiber H%q are parametrized by vertices of

BT and are isomorphic projective smooth varieties. For s € BT, the corresponding

irreducible component is Hﬁ?q st(s) which is isomorphic to the variety obtained from IP’%Q

by first blowing up all Fy-rational points, then blowing up strict transformation of all
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F,-rational line, etc. Thus the inclusion of s into st(s) identifies H%q’s with ]P’%q\UHeH H
where H is the set of rational hyperplanes of ]P’%q. Then we get an admissible open cov-
ering of HY by (H% st(s))s€BTo = (]ng st(s)[)seBTo and intersections of such opens are

of the form H%’St(a) for some simplex o in BT.

There is an explicit description of the spaces H‘k 5 as the following (cf. [5, Sec. 6.4]):
Assume the simplex o with type (e, ..., ex) is represented by

LoD Li DLy D...D Lk Drly.
Let d; = e; + - - - + e;. Consider the affinoid subdomain of B}
Cy = {(x1, ..., z,) € BY : Ya € OFN\rO, |((1,2),a)| = 1}
and the ‘multiannulus’
A= {(t1, . tr) €BY |7 < Jtp] <--- < |ta] < 1}.

By choosing a basis z; of Vk adapted to o, the morphisms

Td;_1+1 Ld;j_1+2 T, —
d . i—1t -1+ di—1
HK,& — Cei,1 : [:L‘(),...,.’Ed] — ( s Sy —
xdi_l '/I;dj,_l ’Idi—l
d . Tdy Tdy Ldj_y
HK,E} - Ak : [l’o,...,’l}d] = ( ) 50y )
-Tdk .Z‘dk .Z‘dk
induces an isomorphism
k
(2.1) H 5 — [[ Ceimr x Ak = Co x Ar.

i=0
2.3. The First Covering of Drinfeld Space.

2.3.1. Moduli Interpretation. We recall the construction of coverings of the Drinfeld half-
space following [10]. Let D be the central division algebra over K of dimension (d + 1)
with invariant 1/(d + 1). Let Op be its ring of integers and IIp be a uniformizer.

Definition 2.1. Let B be an Og-algebra and Q441 be the ring of integers of a maximal
unramified extension of K in D.

(1) An formal Og-module over B is a formal group over B together with an action
of Ok such that it induces the natural action on the tangent space.

(2) A formal Op-module over B is a formal Ox-module together with an Op-action
which extends the action of Ok. A formal Op-module X is special if Lie(X) is
a Ogy1 ®o, B-module locally free of rank 1.

We fix a special formal Op-module ® over k = F,. Let Oy := W(k) and K :=
Ox[1/p]. By [22, Lem 3.60], any such two special formal Op-modules are isogenous.
Let Nilpy,. be the category of Ok-algebras such that image of @ is nilpotent. We define
a functor G : Nilpp, — Sets which maps B € Nilpy, to isomorphic classes of triples
(¥, X, p) where

(1) ¢ : k — B/w is an F -homomorphism.
(2) X is a special formal Op-module over A of height (d + 1)2.
(3) p: ®®r B/wB --» Xp/p is a quasi-isogeny of height zero.

Theorem 2.2 (Drinfeld). The functor G is represented by H%R.



4 ZHENGHUI LI

One could also form another functor G : Nilpy, — Sets which maps B € Nilpy,. to
isomorphic classes of triples (1, X, p) where ¥, X are the same as above and p is a quasi-
isogeny between ® ®j, B/wB and Xp /=B, Without restriction on the height. Then the

Gg=][go"™

h€eZ

where G(") corresponds to those (1, X, p) such that p has height (d + 1)h. Each g(»)
is non-canonically isomorphic to G. By [10, Sec. 2] and [22, Thm. 3.72], the functor

functor Q~ has a decomposition

G is represented by a formal scheme MY, and the decomposition above induces a non-
canonical isomorphism

A0~ yd
Mbp, =Hp X Z.

The space M\%T admits a Weil descent datum relative to K /K which is given by the
composition of the canonical Weil descent datum on H‘(igk and translate by 1 on Z.

Let X (resp. X) be the universal formal special Op-module over H‘é)k (resp. /T/I\ODT).
For n > 0, multiplication by II, induces an isogeny on X (resp. X) and the group
X[I%] = ker(X 1o, X) (resp. X[II%]) is finite flat of rank p(@t" over HE, (vesp.
M\%T). We set 0 := H% and M, := (M\ODT)”g =~ 30 x Z. For n > 1, we define

B = XAN\X[I ) M, o= X[ N\X[IE .
The projection " — X% and M%, — MY, are finite étale morphisms with Galois
group OF/(1+1I,0p). There exist an action of G, D* and a Weil descent data on the
tower { M7, },, together with a G x D*-equivariant period morphism ¢ : M9, — H%

such that when we base change IHI?( to K the morphism is compatible with Weil descent
data (the data on H?-{ is via Galois descent) (See [4, Sec 3.1] for descriptions of actions).

2.3.2. The First Covering. In particular, the first covering = : ! — H‘}( is finite étale
with Galois group F, = Op;/(1+11pOp). Put N = q®*1—1 and let 7 be the composition

r: St HE TS BT

T 1. .1 ; 1 _ . —1yyd
For a simplicial complex n of BT, define ¥, := r~%|n[. It is clear that X, =7 Hf(,n‘

Damien ([18, Thm. A]) proved the vanishing of analytic picard group of H? for any
complete extension L/K (Note that Pica, (H$) = Picg (H$) cf. [11, Prop 8.2.3]). Apply
classification of Raynaud scheme together with a study of invertible functions on H‘z
([18, Thm 7.1]), he shows the following result:

Theorem 2.3 ([17, Thm. 4.9]). There exists u € (’)X(H‘}{) such that
(2.2) PR H%((ﬂ'u)lﬂv) = SpecEO (Os0 [X]/(XN — wu))

In fact, the element v has an explicit description and satisfies the following property.
Let s = [0%] be the standard lattice of Vx and fix b € (F,)?\{0}. Put

U(Z) = (—1)d(b020 —+ -4 bdzd)_N H (aozo + -4 adzd)
a€(Fq)*\{0}

which is an invertible function over H%M =~ PY\ Upey H. In fact, the image of u(z) in
OX(ng)S)/(OX(HfFiq,S))N does not depend on b so we can choose b = (0,...,0,1). We

can lift u; to an invertible function on va{ . and H‘}( st(s) and still denote it by ;. Then
ulga = u; (mod O (HL (S))N).

K,st(s) K,st
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3. COHOMOLOGY OF X! AND DELIGNE-LUSZTIG VARIETY

3.1. Deligne Lusztig variety. Recall the Deligne-Lusztig variety asssociated to G =
GLay1,r, (cf. [6]) . Let B be the subgroup of upper-triangle matrices of G, U be the strict
upper-triangle matrices and T' be the diagonal matrices. Let W = Ng(T)/T = S441 be
the Weyl group identified with the permutation group. Assume w is a matrix corresponds
to permutation (0, 1, ...,d) and we regard F,-points of the flag variety X := G/B as the
set of Borel subgroups of G(F,). Define X (w) C X to be the subvariety whose F,-points
containing Borel subgroups B’ such that B’ and F(B’) are in relative position w, i.e

X(w) ={gB:g 'F(g) € BuB} C G/B.
There is a variety X (w) above X (w):
X(w) :={gU : g 'F(g) € UnU} C GJU

with an obvious map 7 : X (w) — X (w); gU — gB. We have a commutative diagram
X(w) —=G/U
X(w) ——~G/B

By [6, Sec 2.2], the variety X (w) can be identified with H%q. In fact, it is the non-
vanishing locus of

[T (a0Xo+-+aaXa) =c - det((XF )o<ij<a)
a€Pi(Fg)
in ]P’fqu where ¢ € F* depending on choice of representatives of a. In this case, the variety
X (w) can be identified with the closed subvariety DL%Q of Af;:l defined by equation

det((X{ Josiy<a)™" = (=1)*
such that 7 : X (w) — X (w) is induced by the natural map A%jl\{O} — ]P’]‘éq.

Theorem 3.1 ([23, Thm. 2.5.4], [16, Lem. 6.3]). Let s be a vertex of BT and Ky =
K(w'/N). Then E}(N . admits a smooth model E}OK s such that the special fiber ii 18
: N

isomorphic to DL%q. Moreover, the isomorphism is GLg11(Ok) X ]F;d+1 -equivariant.

Let 6 : qud .+ — K be a character. We call it primitive if does not factor through

any norm Norm : IFqu+1 — F.. for s < d. For V a representation of F:dﬂ, we write
Hom]qud+1 (0,V) as V[0].

Proposition 3.2 ([16, Prop. 6.6]). Assume o is a simplex of dimension greater than
zero, then Hip C(Eit(o_))[G] =0 for all j and primitive 6.
3.1.1. G-action. We have the following theorem

Theorem 3.3 ([14, Cor. 4.5]). For any l # p, fix an isomorphism Q, = K and let 0 be
a nonsingular character of F:dﬂ then

— . 1rd
o = Hrig,c

(DLg, /K)[6] := (H, o(DLE, /K) @k K)[6]

is isomorphic to
f&l = Hgt,c(DL%q7Ql)[9]



6 ZHENGHUI LI

as representations of G(Fy) on a field of characteristic zero. Moreover, if i # d then the

0-eigenspace of Hy;, C(DLféq /K) is zero.

Remark 3.4. By Deligne-Lusztig correspondence, the G(F)-representation 7y is ir-
reducible with dimension (¢ —1)(¢®> —1)---(¢? — 1), so is Tg. Define

HE, (DL§ /K™) := colimc o H, (DLE /K')

rig,c rig,c
where K'/Kj are finite unramified extensions. Then 7y is realizable over K"' as 7y &
HZ (DL]‘éq J/K)[f] ®% K. In fact, such a realization is unique (up to isomorphism)

rig,c
by applying the following well-known lemma and using irreducibility. we also use 7y
. d d 2 . .
to denote the representation Hg, (DL /K")[0] or HE, .(DLg /K)[6] if there is no
confusion.

Lemma 3.5. Let G be a finite group. Let K be a field in characteristic zero and L/K
be an extension of K. Assume V, V' are two finite dimensional K -representations of G,
then there is an isomorphism

Homg(V, V') @k L —» Homg(Vy, V).
Proof. 1t is clear there is an isomorphism
Hom(V, V') ®x L —» Hom(Vy, V}).

For elements g; € G (1 <i < n), let p(g;) (resp. p'(gi)) be their image in End(V) (resp.
End(V")), then we can identify

Homg (V, V') = ker(Hom(V, V') =% @, Hom(V, V"))
where a;(f) = p'(gi) o f — f o p(g)- O

3.1.2. Frobenius. Let o be the lifting of the Frobenius of F, to W(F,)[1/p]. Assume 6
is a primitive character of IE‘ i and h € FX gt Since F;d+1 is a cyclic group of order

(@t —1) and Kgqq := W(qu+1)[1/p] contains (¢?*! — 1)-th root of unit, the f-action

on H“g (DL, /K) descents to H“g ¢(DLr .., /Kat1). By [14, Remarks (1) before Lem
1.3], the space Hrlg o(DLg_,,, /Ka+1)[f] is stable under the action of @@+1. Since the

action of G(F,;) commutes with ¢ and rigid cohomology commutes with extension of

base field, we can write
Hi, (DL ., /Kas1)[0] = My ® Vy

rig,c

where Vj is a G(IF,)-representation of dimension H?Zl(qi —1) and My is a 1-dimensional
¥ 1-module over Kg, .

Proposition 3.6. ¢%*! acts on My via multiplying by (—1)%q3d¢+1)/2,

Proof. Note that p9t1 is g9+1-semilinear which fixes [Fqa+1, it suffices to see

d
Tr(0 | He, (DLE ., )16) = (=1)%" D T (q

Use the same argument as in [15, Page 171] (replace Lefschetz trace formula of crystalline
cohomology by rigid cohomology) and apply theorem 3.3, we get

(=) Tr(p™ | Hfiy (DL, ,)[0)) = ) oD O Fix(p Y.
helFXdJrl

To compute it, recall ([14, Sec 4]) the following expression of Deligne-Lusztig variety.
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Let zo =1 and 21, ..., zq to be d variables. Set § := det((z;ﬂ)ogz’?]’gd) and

d
II:=— H Zazzz

acFit {0} =0

Then IT = (—1)259-1. Set A = Fy[21, ..., za][], B = A[X,]/(1- X&' ~HI), Y = Spec A
and X = Spec B. The map X (w) — X (w) can be G(F,)-equivariantly identified with
the natural map X — Y. The F;dﬂ—action on Xg ,., — Yr_,,, can be written as
h(Xo, 21y ...y 24) = (hXo,21,...,24) where h € F;dﬂ and (Xo, 21, ...,24) € X (k). Thus
Fix(p?t1h~1) is the set (Xo, 21, ..., 2q) € k4T such that

d+1
X = hX,
zZ; € qu+1

XdT () = 1

Since Xy # 0, the third equation becomes II(z) = (-1)45971(z) = h~!. Note that
zfd+l = 2,50 07 = det((zfjl)ogi,jgd) = (—1)%6 which means h = 1. Now the claim

follows from [6, Prop 2.3] that

d d

#Y (Foorr) = [[(@* = @) = "2 ][(d" = D).

=1 =1

3.2. Hyodo-Kato cohomology of X} ..

3.2.1. Owerconvergent Hyodo-Kato cohomology. We recall compactly supported over-
convergent Hyodo-Kato cohomology in [20]. Let L = K or C and X is a smooth rigid
analytic variety over L. Then we have arithmetic (when L = K) or geometric (when
L = C) Hyodo-Kato cohomology RT'uk(X) of X (See [2, Sec 4.2, 4.3]) and completed
geometric (when L = C) Hyodo-Kato cohomology RI'yg (X) of X (See [3, Sec. 4]).
The definitions can be moved to condensed maths and we get solid version of these
cohomologies. Note that if there exists a semistable model of X, we have local global
compatibility of corresponding cohomologies (cf. [2, Prop. 4.11, 4.23], [3, Lem. 4.2]).
In overconvergent setting, there are two definitions: one is via Hyodo-Kato cohomol-
ogy of Gross-Klonne ([2]), the other one is locally via presentation of dagger affinoid,
use the geometric rigid analytic Hyodo-Kato cohomology and then descent. These two
constructions gives the same cohomology (cf. [3, Lem. 4.14]). In particular, we have the
following local-global compatibility: Assume 2 /Op is a semistable weak formal scheme
where F is a finite extension of K. Let XT := 2o, ,, be the generic fiber of 2o, which
is a smooth dagger variety. Then we have a quasi-isomorphism of (¢, N)-modules
RUuk(XT) ~ RUI8(270/Lo) @2, Kv

rig
RFHK,F(XT) = err?gg(%/o/K)
If 2 is quasi-compact and quasi-separated, then the cohomology groups above are finite
dimensional and the solidification is not necessary.
For compactly supported overconvergent setting. We first have a local definition: For
a smooth dagger affinoid variety X' over L with presentation { X}, }nen, the correspond-
ing (local) overconvergent Hyodo-Kato cohomology is defined via

A, (71 = colimy Al ()
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where * € {(), F} when L = C. The compactly supported cohomologies are defined by
Rl o o(X1) = [RTc o (XT) = RTpc . (0X7)
where the cohomology of boundary is defined as
RT% . (0XT) := colimp Rl . (X5 \XT).

For general smooth dagger variety, the corresponding compactly supported Hyodo-Kato
cohomology RTgk «(XT) is defined via analytic descent (cf. [20, Sec. 4.1]). When
L = C and X a smooth dagger affinoid over L, we have local-global compactibility

RPuk s« o(XT) = R, (XT).
We have the Hyodo-Kato duality for smooth dagger affinoid variety:

Theorem 3.7 (]20, Sec. 6.5.3]). For a smooth dagger affinoid variety X' over K pure
of dimension d, there is a perfect pairing compatible with (o, N,Gf) actions

Hig (XE) x HECE (XE){d} — L

where Lp = K" when « = () and Ly = K when * = F. Moreover, such a pairing is
compatible with the pairing of de Rham cohomology under the Hyodo-Kato map.

3.2.2. Cohomology of Z;’C.
Lemma 3.8. For a primative character 6, we have

MoyQ@Tyg 1=d

Lo = {100

where My is a (0?1, N,Gg)-module of rank 1. Here ™' acts as multiplying by
(—1)dqd(d+1)/2, the action of the monodromy operator N is trivial, the G -action factors
through Gal(Ky/K) = ]F;Hl via the character 6.

Proof. By functoriality of the Hyodo-Kato cohomology, the action of G(F,) x IF‘qu 1
commutes with the action of o, N and Gx. By theorem 2.3, E;,c admits a smooth
formal model whose special fiber is the Deligne-Lusztig variety. Note that Z;,c is an
(smooth) affinoid domain of BE (See section 2.2) which admits a dagger structure and
we view it as a dagger affinoid space. Since the Deligne-Lusztig variety admits a smooth
weak formal model, the natural map (where 0 means log structure 1 — 0)

Hlfig(DL]qu+1 /Kn+1) — Hiig(DLl%q,i+1 /K2+1)

r

induces an isomorphism of p-modules which is equivariant under the action of F;d 4+ and

G(Fy). Using duality of Hyodo-Kato cohomology (Theorem 3.7) and rigid cohomology
([19, Thm. 1.2.3]) and the local-global compatibility, we can apply previous results on
rigid cohomology of Deligne-Lusztig varieties to Hyodo-Kato cohomology of 2;0- Thus
we get the decomposition, the dimension of My is one and %! acts as multiplying by
(—1)dqd(d+1)/2. The action of the monodromy operator N is trivial because Ny = qpN.
We need to determine the Galois action, note that there is a formal scheme Z;OKN such
that its special fiber is the rational Deligne-Lusztig DLy, and Ei, Rn is the base change

of its generic fiber to Ky.
Lemma 3.9. There is an isomorphism of finite dimensional Gk, -modules
HI?IK,C(Z;,KI\J R, K" = HI?IK,C(E;,C)

where the action on the left hand side is via the coefficient K"".
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Proof. The non-completed Hyodo-Kato satisfies Galois descent (cf. [2, Prop. 4.26]), we
know compactly supported Hyodo-Kato cohomology also satisfies Galois descent. Thus
we have a map

Hik (S8 k) & HIS&K@;,C)GKN — Hig(Z1 o)
By local-global compatibility, there is an isomorphism Hyjy (X} ;) = H5, (DLg, /Ko).
Thus, we have the following commutative diagram of finite dimensional G, -modules

Hiy (3 ey ) @ K7 —— Hig (35.0)

HE, (DLy, /Ko) @K, K™ —— H$,(DLg, /Ko) ®k, K.

rig
We can conclude from duality for Hyodo-Kato cohomology (Theorem 3.7), duality for
rigid cohomology and local global compatibility of compactly supported Hyodo-Kato
cohomology.
O

In particular, the G -action on HﬁK,c(El’ ) factors through Gal(Kx/K). Note

that, after choosing wy a N-th power root of w, there is an isomorphism

Sy 250 0my  [X1/(X )

where X' = X/wy. Then Gal(KN/K) can be identified with py via g — g(nn)/7N €
un and the Galois action of Gal(K  /K) is identified with the action of ]F:d +1 by choosing
an appropriate isomorphism gy = F:dﬂ. So the action of G on HgIK,c(Z;,C)[G] factors
through Gal(Ky /K) = IFqu 41 via the character 6.

O

4. SUPERCUSPIDAL PART OF HYODO-KATO COHOMOLOGY
4.1. Notations. Let GD be the group G x D* and let vgp be the map
vgp : G X D* — Z; (g,b) — vk (det(g) Norm(b)).

For i € Z, let [GD); := v;},(iZ) and put [G]; := G N [GDJ;, [D]; := D* N [GD);. Note
that there are inclusions
Of — [GDlo; b+ (id,b)

G — [GDlo; g+ (g,11,9)
but their image does not commute.

Let 6 : IF;(d .. — K be a character. We can view 6 as a character of [D];1; via
[D]d+1 = OBWZ — OB — Og/(l + HDOD) = ]F;d-{—l - K.

It is associated, via Deligne-Lusztig correspondence, a representation 7y of GLgy1(Fy).
We can view it as a representation of GLg,1(O)w? via GLg1(Ox) — GLg41(Fy).
We consider the following representations via induction:

#(0) = c-indfgjfl Oy 7O

7['(0) = C—indng+1(OK)wZ ﬁg
p(0) == c—ind[%](“r1 6.
On the Galois side, let 8 be the character of [Wx]as1 1= Ix (p%T1)% such that 6(p?+?!) =
(=1)dg¥d+D/2 and 6|;, factors as Ix — Ix/Ix, = Flan 5 K. Let

. Wk
o(0) := 1nd[WK]d+1
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be the Weil representation. Let M (6) be the (d+1)-dimensional (¢, N, Gk )-module over
K" described as the following: M () admits a basis {eg, ..., eq} such that ¢(e;) = e;41
for 0 < i < d and ¢(eq) :v(—l)dqd(d‘*‘l)/zeo, the monodromy acts trivially, the Ix-
action factors through Gal(Ky/K) = IE‘quH via g(e;) = 0%(6(g))e; and the Frobenius
in Gk acts trivially on e;. So o(8) is the Weil-Deligne representation associated to M (0).

There is a natural action of GD on M}, which is non-canonically isomorphic to
$! x Z. Let MpZ be the quotient M}, /ww?”. Tt has a formal model over O (the Weil
descent datum on ML _/w? is effective cf. [22, 3.49]) which we still denote by M ;7.
If we identify S} with L = $L x {0} C Bk x Z/(d 4+ 1)Z = M7, the action of GD
induces one on MpZ. The stabilizer of £k x {0} can be identified with [GD]ay 1.

4.2. Restriction to Smooth Locus. Let J be a finite set of vertices of BT . We define
Yy = Nse J]H[%q’st(s) to be the intersection of irreducible components corresponding to

seJand Yy = Y7 \(UsgsYs). Recall that we have the following maps
Sk —— %% =Hf —— H{ .
Theorem 4.1. The inclusion of tubes of £,
(Yoo — (= (Yalke))e
induces an isomorphism of Hyodo-Kato cohomologies
Hie(n ' (1Yo (ko)) o) — Hi(n ' (Vo [Lo))e)-
Proof. Take X = H‘ék, the condition of [16, Thm. 5.1] is satisfied thus we get a bijection

(4.1) Hip(n ™ (Yo lhe) — Hig(r~ ' (1Yalko))-
In fact, they are finite dimensional K*"-vector spaces. Since |Y;[so2 HC}-{ st(0) for some

simplex o of BT, use the bijection above, it suffices to see overconvergent de Rham
cohomologies of w’l(H‘}( 5) are finite dimensional. We have an explicit description (cf.
16, After Lem. 6.7]):
Eé = (7:4k X TCU)/H
1/N

where Ta, = Ay g(uy, ), Tc, = C’ka((wucg)l/N) are pin-torsors above Ay  and C,
respectively, H is the anti-diagonal of u3.. So it suffices to see finiteness for T4, and
Te, . Since Te, is quasi-compact and smooth, finiteness follows from [13, Thm. A]. For

Ta,, it is [16, Cor. 5.11, Thm. 5.8] applied to the semi-open monomial torus Ay.

Applying geometric Hyodo-Kato isomorphism, we have a commutative diagram

Hiyy (n 71 (Y5 [h)0) @ € —— Hig (v (1¥s[50))e)

| |

Hiyg(r (1Y [50))0) @xcr € —— Hip(r (1Y [h)) )

where two horizontal maps are isomorphisms by geometric Hyodo-Kato isomorphism
and right vertical map is an isomorphism by (4.1). Thus the left vertical map is an
isomorphism which, use finiteness, implies the desired result.

O

Proposition 4.2. We have isomorphisms compatible with actions of 0“1 and Gg

Dy, Hipe p (SL0)l0] 7= d
4.2 L 32 B 1] P s€BTo ""HK,F,c\"'s,C
(4.2) HK,F7c< c)lf] {0 others.



Hyodo-Kato Cohomology of the First Covering of Drinfeld Spaces 11

In particular, as a G-module, HHK Fe (34)[6] is isomorphic to w(6).

Proof. By functoriality, the Hyodo-Kato morphism is G x F;d +1-equivariant. Therefore,

J 1
HHK F c(zet(o) C

ement will induce a nonzero element in H, ({R (2 #(0),c) 0] Especially, the Cech spectral

)[0] = 0 when o has nonzero dimension because otherwise a non-zero el-

sequence given by the covering provided by Zst(o)

_ s—r 1
(4-3) E1rs = @ HKFc ( ),C ) HHKFC(EC)
oceBT

degenerates once we take the 9—isotypical part. Apply Theorem 4.1 and 3.1, we get

@ HKFc st(s @ HKFc @ rlchLF/K)H

sEBTo sEBTo sEBTo

4.3. Jacquet Langlands and Local Langlands.

Theorem 4.3. Let 0 be a primitive character of F;d+1. We have an isomorphism of
G-modules compatible with action of o, N and G .

(4.4) Hompx (p(0), Hix, C(MDT‘C)) = {3(9) @A) ZtZeis.

Proof. For the first, we forget the action of p, N and Gg. As G-modules, we have the
following isomorphisms

Hompx (p(6), Hifx C(Mm o)) = Hompx (C-indﬁp]d+1 0, C-ind[cg;%]lprl Hiig (5¢8))
HOm[D]d+1 (97 C'ind[GG’],i_H HI%K,C(Elc))
c—ind[%]dH HornIF:d+1 (0, HIC_IIK’C(EIC))

1%

= C'ind[cé;]dJrl 7T(g)|[G]d+1
= c-indffy, | (c-indy, | 7(0))liG1us

c—ind[GG]dH @ e (7T(0))

z€G/[Glat+1

~ P cindfy,,, (7 (0))
z€G/[G)a+1
77(9)\G/[G]rz+1\ — W(g)dﬂ_

1%

The second isomorphism is by adjunction, the forth one is proposition 4.2, the sixth one
is Mackey decomposition using [G]4+1 is a normal subgroup, the others are easy. When
r # d, the same computation together with proposition 4.2 shows the Hom set is zero.

Now we consider the action of ¢, N,Gg. From the computation above, we see
Homg (7 (), Hitx C(MDT o)p(0)]) is a (d + 1)-dimensional (¢, N, Gk )-module and the

(d 4+ 1) copies of 7(#) corresponds to (d + 1) connected components of MDTC Con-
sider the period map £ described in section 2.3.1, the Frobenius action ¢ translate the
connected components by +1. On HI‘_iIK’C(MBZC), @1 acts via multiplication via
(fl)dqd(d“)/2 by proposition 3.8 and 4.2. To see N and Gk act as desired, note that
the period map is a local isomorphism, compatible with Weil descent data. Thus it
follows by a same argument as in section 3.2.2 and that the Cech spectral sequence (4.3)

is N and G equivariant.
O
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